

SIDDARTHA INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583 <u>QUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: Design and Analysis of Algorithms (20CS0523)

Course & Branch: B.Tech – CSE, CSM, CIC & CSIT

Year & Sem: III B.Tech & II-Sem Regulation: R20

UNIT –I INTRODUCTION, DISJOINT SETS

1	a)	What do you mean by algorithm? List some of the properties of it.	[L1][CO1]	[04M]					
	b)	Classify the rules of Pseudo code for Expressing Algorithms.	[L2][CO1]	[08M]					
2	Siı	mplify steps involved in performance analysis with example.	[L2][CO1]	[12M]					
	a)	Explain space complexity and time complexity in detail with example.	[L2][CO1]	[08M]					
3	b)	Illustrate an algorithm for Finding sum of natural number	[L2][CO1]	[04M]					
4	What is asymptotic notation? Explain different types of notations with examples. [L2][CO								
5	Di	scuss briefly with suitable example about Big 'O' notation and Theta notation	[L3][CO1]	[12M]					
6	a)	Solve the given function If $f(n) = 5n^2 + 6n + 4$ then prove that $f(n)$ is $O(n^2)$.	[L3][CO1]	[04M]					
	b)	Explain two types of recurrences in detail with suitable example.	[L2][CO1]	[08M]					
7	a)	Apply the Master's theorem to Solve the following Recurrence relations	[L3][CO1]	[06M]					
		i) $T(n) = 4T(n/2) + n$ ii) $T(n) = 2T(n/2) + n\log n$							
	b)	What is iterative substitution method? Apply the Iterative substitution method to	[L3][CO1]	[06M]					
		Solve the following Recurrence relations.							
		T(n) = 2T(n/2) + n							
8	Demonstrate Towers of Hanoi with algorithm and example. [L3]								
9	a) Define disjoint set. Explain any four types of disjoint sets operations with [L2][CO1]								
		Examples.							
	b)	Explain the weighted union algorithm for union algorithm with example.	[L2][CO1]	[06M]					
10	a)	Explain the collapsing rule for Find algorithm with example.	[L2][CO1]	[06M]					
	b)	Determine steps of Union and Find algorithms with example.	[L5][CO1]	[06M]					

Course Code: 20CS0523

 ${\bf UNIT-II} \\ {\bf BASIC\ TRAVERSAL\ AND\ SEARCH\ TECHNIQUES,\ DIVIDE\ AND\ CONQUER}$

1	Explain techniques of binary trees with suitable example [L2][CC							
2	Elaborate BFS algorithm and trace out minimum path for BFS for the following example.	[L6][CO2]	[12M]					
	D F E							
3	Explain DFS algorithm and trace out minimum path for DFS for the following example.	[L5][CO2]	[12M]					
	D F E							
4	What is connected component and spanning tree? Draw the spanning tree for the							
	following graph using DFS algorithm A B C G							
5	a) Compare between BFS and DFS techniques.	[L4][CO2]	[04M]					
	b) What is divide and conquer strategy? Write briefly about general method and its algorithm	[L3][CO2]	[08M]					
6								
7								
8								
9	a) Sort the records with the following index values in the ascending order using quick sort algorithm. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6.	[L2][CO2]	[6M]					
	b) Analyze the time complexity of merge sort using recurrence relation	[L2][CO2]	[6M]					
10	Explain the Strassen's algorithm for matrix multiplication and analyze time	[L5][CO2]	[12M]					
	complexity.							

UNIT –III GREEDY METHOD, DYNAMIC PROGRAMMING

1	Explain in detail about general method of greedy method with algorithm and list the few applications of greedy method.								w [L2][CO3]	[12M]	
2	Elaborate job sequencing with deadlines by using greedy method where given the jobs, their deadlines and associated profits as shown below. Calculate maximum earned profit.										[12M]
		Jobs	J1	J2	J3	J4	J5	J6			
		Deadlines	5	3	3	2	4	2			
		Profits	200	180	190	300	120	100			
3	Construct an optimal solution for Knapsack problem, where $n=7,M=15$ and $(p1,p2,p3,p4,p5,p6,p7)=(10,5,15,7,6,18,3)$ and $(w1,w2,w3,w4,w5,w6,w7)=(2,3,5,7,1,4,1)$ by using Greedy strategy.									1	[12M]
4		algorithm for I	Knapsa	ck pro	blem a	ınd ana	lyze tiı	ne con	nplexity.	[L4][CO3]	[6M]
	What is mini kruskals algo	-	nning	tree ai	nd writ	te the a	algorith	m of j	pseudo code for	[L3][CO3]	[6M]
5	Apply the minim		ree of	the fol	lowing	graph	using	Kruska	als algorithm an	d [L3][CO3]	[12M]
	prims algorithm.										
6	a Write short notes about general method of dynamic programming.										[3M]
	b Build any one application of dynamic programming with an example.										[9M]
7 8	Discuss about Optimal binary search tree with suitable example.										[12M]
9	Explain 0/1 knapsack problem by using dynamic programming with an examples. Construct an algorithm for All pairs of shortest path and calculate shortest path between									[L2][CO3] n [L6][CO3]	[12M] [12M]
	all pairs of vertices by using dynamic programming method for the following graph.										
10	Analyze the minimum cost tour for given problem in travelling sales person by using dynamic programming.									ts [L4][CO3]	[12M]
	10 20 5 15 9 8 10 9										

UNIT –IV BACKTRACKING, BRANCH AND BOUND

1	Distinguish in detail 8-queens	vith state space tree.	[L4][CO4]	[12M]				
2	Explain sum of subsets by usi	ole.	[L5][CO4]	[12M]				
3	a) Recall the graph coloring.	coloring with an example.	[L5][CO4]	[9M]				
3	b) Discuss about General me		[L3][CO4]	[3M]				
4	Discuss the Hamiltonian cycle	peration with example.	[L6][CO4]	[12M]				
5	Give brief description about the	he general i	nethod	of bra	nch ar	nd bound.	[L2][CO4]	[6M]
6	Find the LC branch and bour	ale person problem whose	[L4][CO4]	[12M]				
	cost matrix is as follows:							
		1 2	3	4	5			
	1	[∞] 20	30	10	11			
	2	15 ∞	16	4	2			
	3				4			
	4	- Table	18	∞	3			
	5	16 4	7	16	∞			
	Simplify 0/1 knapsack proble	m and desi	gn an al	lgorith	m of I	C Branch and Bound and	[L4][CO4]	[12M]
7	find the solution for the knap	p3, p4) = (10, 10, 12, 18),						
	(w1,w2, w3, w4) = (2, 4, 6, 9)							
8	Construct the LC branch and	ck instance n=4 with	[L6][CO4]	[12M]				
	capacity M=15 such that pi={	oly FIFO branch and						
	bound technique.							
9	a) Explain the principles of	FIFO branc	ch and t	ound.			[L2][CO4]	[6M]
	b) Explain the principles of	LIFO branc	ch and l	bound.			[L2][CO4]	[6M]
10	Implement any one branch an	d bound ap	plicatio	n with	an ex	ample.	[L3][CO4]	[12M]

UNIT –V NP-HARD AND NP-COMPLETE PROBLEMS

1	Ex	plain the following	[L2][CO5]	[12M]
	i)	P class		
	ii)	NP class		
	iii)	NP complete		
	iv)	NP Hard		
	v)	Non-deterministic problem		
2	Co	nstruct the non-deterministic algorithms with suitable example.	[L3][CO5]	[12M]
3	Bu	ild the non-deterministic sorting algorithm and also analyze its complexity.	[L6][CO5]	[12M]
4	De	termine the classes NP-hard and NP-complete problem with example.	[L5][CO5]	[12M]
5	Sta	te and explain cook's theorem.	[L2][CO5]	[12M]
6	Illu	strate the satisifiability problem and write the algorithm.	[L2][CO5]	[12M]
7	Ex	plain Reduction source problem With example.	[L4][CO5]	[12M]
8	Ex	plain the following: (a) decision problem	[L4][CO5]	[12M]
		(c) non deterministic machine		
		(d) satisfiability		
9		w to make reduction for 3-sat to clique problem? and Explain	[L3][CO5]	[12M]
10	a)	Statement the following with examples	[L4][CO5]	[6 M]
		a) Optimization problem		
		b) Decision problem		
	b)	Explain and shows the relationship between P,NP,NP Hard and NP Complete with	[L3][CO5]	[6 M]
		neat diagram		

Prepared by: Dr. J.Sridhar, Ms.N.Monika, Ms. K. Maheswari, and Mrs. T.M. Mekala Rani and Mrs. D. Viswasahithya